An IEEE Sodieties and Technical Councils Publication
IEEE Data Descriptions

Received 26 June 2025; revised 28 September 2025; accepted 7 October 2025; Date of publication 10 October 2025; date of
current version 18 November 2025.

Digital Object Identifier 10.1109/IEEEDATA.2025.3620273

Descriptor: A Corpus of Synthesizable
Verilog RTL Modules Dataset for EDA
Research (CORE)

KIAN KIT CHEAH ©'2 (GRADUATE STUDENT MEMBER, |IEEE),

FU QI CHUA ©12 (GRADUATE STUDENT MEMBER, IEEE), YUNXIANG ZHANG ©1,
ZHUOFAN LIN @1 YUXIN JI ©" (MEMBER, IEEE), YUHANG ZHANG @1,
XINFEI GUO 3 (SENIOR MEMBER, |IEEE),

HARIKRISHNAN RAMIAH ©2 (SENIOR MEMBER, IEEE),

AND YONGFU LI ©! (SENIOR MEMBER, IEEE)

School of Integrated Circuits, Shanghai Jiao Tong University, Shanghai 200240, China
2Department of Electrical Engineering, University of Malaya, Kuala Lumpur 506033, Malaysia
3Global College, Shanghai Jiao Tong University, Shanghai 200240, China

CORRESPONDING AUTHORS: Harikrishnan Ramiah (e-mail: hrkhari@um.edu.my) and Yongfu Li (e-mail: yongfu.li@sjtu.edu.cn).

This work was supported in part by the National Natural Science Foundation of China under Grant 62350610271 and Grant 62201340, and
in part by the Explorers Program of Shanghai (Basic Research Funding) under Grant 24TS140020.

ABSTRACT This article introduces the Verilog Core Dataset (CORE), a systematically curated corpus of
137 synthesizable Verilog HDL modules spanning 24 distinct categories of digital logic designs. Unlike
existing register-transfer level (RTL) benchmark suites that suffer from outdated designs, inconsistent
quality, and limited configurability, CORE is purpose-built to address these limitations through a rigorous
methodology that combines large language model-assisted code generation, human expert refinement,
and comprehensive verification pipelines. Each module is accompanied by a respective testbench for
functional simulation, and adheres to Verilog-1995 and Systemverilog-2012 standards, ensuring broad
tool compatibility and synthesis readiness. CORE’s parameterized and scalable designs enable structural
variation, making it uniquely suited for ML4EDA research, design-space exploration, and design-
technology co-optimization workflows. By offering a reproducible, extensible, and standards-compliant
RTL corpus, CORE establishes a new foundation for benchmarking, education, and innovation in digital
system design.

IEEE SOCIETY/COUNCIL Circuits and Systems Society (CASS)
DATA TYPE/LOCATION Text; Worldwide

DATA DOI/PID 10.21227/ddb9-0921

INDEX TERMS Corpus of register-transfer level designs (CORE), dataset, digital design, register-transfer
level (RTL).

BACKGROUND

The semiconductor industry’s continued advancement relies
on design-technology co-optimization (DTCO), a methodol-
ogy that integrates circuit design with manufacturing process
development [1], [2], [3]. Fig. 1 depicts design-technology
co-optimization (DTCO) as a closed-loop feedback method-
ology for the precise optimization of process technology

and circuit design [4]. The methodology involves technology
computer-aided design (TCAD) simulations [5], [6], process
integration [7], [8], [9], standard cell design [10], [11],
[12], process design kit (PDK) development [13], [14], [15],
circuit implementation, and performance-power-area (PPA)
evaluation. The entire DTCO flow is initiated by register-
transfer level (RTL) circuit descriptions, which serve as

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

416

VOLUME 2, 2025

HTTPS://ORCID.ORG/0009-0005-6742-3723
HTTPS://ORCID.ORG/0009-0006-3035-6827
HTTPS://ORCID.ORG/0009-0000-4900-9661
HTTPS://ORCID.ORG/0009-0002-5981-9726
HTTPS://ORCID.ORG/0000-0001-8660-4929
HTTPS://ORCID.ORG/0000-0002-4101-6207
HTTPS://ORCID.ORG/0000-0002-2374-3953
HTTPS://ORCID.ORG/0000-0003-3505-6525
HTTPS://ORCID.ORG/0000-0002-6322-8614
mailto:hrkhari@um.edu.my
mailto:yongfu.li@sjtu.edu.cn
https://doi.org/10.21227/ddb9-0921

An IEEE Sodieties and Technical Councils Publication [l
IEEE Data Descriptions

TABLE I. Overview of Existing RTL Benchmark Suites: Contributions and Limitations

Benchmark

Contribution

Limitation

ISCAS Benchmarks
(18], [19]

[16], [17],

EPFL Benchmark Suite [18], [20]

OpenCores [21]

BaseJump STL [22], [23]

FuseSoC Cores [24], [25], [26]

Foundational combinational (ISCAS’85) and sequential
(ISCAS’89) circuits, widely used in early Automatic
Test Pattern Generation (ATPG) and logic synthesis
research, provided a common evaluation standard for
early EDA algorithms.

Offers a modern collection of 23 combinational circuits
(10 arithmetic, 10 random/control, and 3 very large
“MtM” designs), written in Verilog-2001 and widely
used in logic synthesis research.

A large, open repository of real-world IP repository
with over 800 open-source projects spanning CPUs,
controllers, and SoCs, offering high functional diversity
across different application domains.

A comprehensive open-source SystemVerilog IP library
with hundreds of reusable modules, from basic blocks to
complex components like Network-on-Chip and DRAM
controllers. The library has been validated in silicon,
notably in TSMC Celerity SoC with 511 RISC-V cores
and 385M transistors, underscoring its practical rele-
vance.

A hardware description language (HDL) package man-
ager that provides a versioned library of over 100
reusable open-source IP cores, including CPUs, con-
trollers, and SoCs. It simplifies design reuse and de-
pendency management, promotes modern file stan-
dards, and enables seamless integration of cores across
projects.

Outdated designs; ISCAS’85 contains 11 small combi-
national circuits (ranging from 6 gates in c17 to ~3.5k
gates in ¢7552). The ISCAS’89 extends the suite with
~30 sequential circuits (from s27 with 27 gates up to
$38584 with ~38k gates). None are parameterized or
modernized, and documentation is limited.

Designs are fixed and non-parameterized; the arithmetic
set totals ~0.37M nodes, random/control ~76k nodes,
and MtM ~60M nodes. All are purely combinational,
limiting applicability to sequential design research.
Scale may not represent modern System-on-Chip (SoC),
and documentation can be inconsistent.

The corpus is not a curated benchmark: quality, docu-
mentation, and verification maturity vary widely. Only
a fraction of projects are synthesizable, and fewer than
20% include testbenches. Inconsistent coding styles and
ad-hoc verification pipelines hinder systematic, apples-
to-apples comparisons, making reproducible evaluations
difficult.

Despite its breadth, BaseJump STL is not a curated
benchmark suite but a reusable IP library verification
coverage is uneven, with many modules tagged ex-
perimental documentation is incomplete in places, and
reliance on module generators requires specific exper-
tise, making systematic benchmarking and reproducible
evaluation difficult.

As a collection of pointers to external repositories, it is
not a curated, self-contained benchmark suite. Conse-
quently, the cores exhibit significant inconsistencies in
coding style, documentation, quality, and adherence to
Verilog standards.

Feedback

----------------- Technology ------------+ -. Design,
RTL Design :

TcAD | ComPact | Jstandard Cell (CORE Dataset) | |
Model H H

I Synthesis, P&R, i

; ; DRC, STA |

Process | | Design Rules | | PDK
Integration H PPA Eval. H

FIG. 1. Design-technology co-optimization (DTCO) flow.

the foundational input for implementation and evaluation
(Fig. 1). Consequently, the accuracy of power-performance-
area-cost (PPAC) evaluation is fundamentally constrained by
the quality, consistency, and diversity of the RTL benchmarks
that initiate the flow.

The limitations of established RTL benchmark suites di-
rectly reflect these challenges. As summarized in Table I,
these suites can be broadly categorized into two groups. The
first group includes foundational academic benchmarks, such
as the ISCAS benchmarks [16], [17], [18] and the EPFL
benchmark suite [18], [20]. While instrumental in early EDA

VOLUME 2, 2025

research, many of their designs are now outdated, non-
configurable, and often lack comprehensive documentation.
The second group comprises large-scale IP core collections
that are often repurposed for benchmarking purposes. This
includes repositories like OpenCores [21], IP libraries such
as BaseJump STL [22], [23], and HDL package managers
like FuseSoC Cores [24], [25], [26]. Their primary limitation
is that they were not curated as formal benchmark suites,
resulting in highly inconsistent quality, coding styles, verifi-
cation status, and documentation.

This fragmented landscape poses a fundamental barrier:
without a systematic, standardized, and parameterizable RTL
corpus, researchers lack a reliable basis for reproducible
evaluation. The need for such a corpus serves two distinct
and complementary purposes. First, for design-technology
co-optimization (DTCO) and broader digital design explo-
ration, a curated RTL dataset must prioritize structural di-
versity and parameterizability, allowing for consistent PPA,
process-sensitivity, scalability, and microarchitecture stud-
ies across tools, libraries, and process corners. Second,
for Al-driven workflows, particularly large language mod-
els (LLMs) used for code generation, verification, and

417

CHEAH et al.: DESCRIPTOR: CORPUS OF SYNTHESIZABLE VERILOG RTL MODULES DATASET

()
(a)
0 —D PROMPT.md
core
- e— —D README_ADDERS.md
= A :
. @ (b) —B——D README_VOTING.md
- —> I+I docs —E adders =---
Prompt =
Engineering —E— [
------------------------ libraries - oters
. Verilator - lyze_verilog_dataset.
Verilog HDL Testbench . . [erape. o caseces
"l \“ A —D report.py
+ ”l . \“ scripts —D verilog_standard_report.py
alu.v th_alu.cpp = — O
| L e DATASET.md Automated
\ . J ------- PY _REQ?T d Repor-t
Q\ Yosys Python Scripts | Generation
. VERILOG_STANDARDS.md
Human oversight BN
README.md

FIG. 2. Overall workflow of data collection and design process. (a) LLM-assisted HDL and testbench co-generation. (b) Functional and performance

verification. (c) Data compilation, structuring and documentation.

design-space exploration [27], [28], [29], the dataset must
prioritize consistent coding style, clear documentation, and
labeled examples to enable robust training, fine-tuning, and
benchmarking. In short, DTCO requires breadth and config-
urable structural variation while LLM development requires
consistency, annotation, and repeatable coding conventions.
The absence of a single, curated dataset, therefore, both
constrains the reproducibility of DTCO and limits progress
in LLM-based hardware design automation. A high-quality
RTL corpus that explicitly addresses these two needs is
essential for rigorous EDA evaluation and for advancing
ML/LLM methods in digital design.

To address these limitations, we present the corpus of
RTL designs for EDA research (CORE) dataset, curated to
advance EDA for synchronous VLSI systems through

Comprehensive and evolving library: The dataset provides
a broad and continually expanding foundation for EDA
research. It currently features 137 unique Verilog modules
across 24 distinct categories, including adders, comms, and
memory controllers, each with detailed documentation on its
functionality, parameters, and usage. The open-source nature
of the collection encourages community contributions and
ensures its future growth.

Parameterized and scalable designs: Modules are highly
parameterized and configurable, enabling diverse structural
variations. Synthesized instances range from a few to over
100 000 gates, supporting scalability studies and ML4EDA
[30] dataset generation.

Verified, synthesizable, and standardized modules: The
dataset’s quality is ensured through rigorous testing and
adherence to established Verilog standards. All modules are
functionally verified through their respective testbenches.
Synthesis data for all modules is also available, making them

418

reliable, IP-like building blocks for larger systems. To ensure
broad tool compatibility, modules are written using synthe-
sizable constructs primarily from the Verilog-1995 (IEEE
1364-1995) [31] and SystemVerilog-2012 (IEEE 1800-2012)
[32] standards. This adherence is programmatically verifiable
using an included Python analysis script, which reports on
the specific language features used in each module.

COLLECTION METHODS AND DESIGN

The CORE dataset was developed through a systematic
methodology. This approach emphasizes the co-generation
of register transfer level (RTL) code and its corresponding
testbenches using large language models (LLMs), followed
by human expert oversight for refinement, and a rigorous
verification and characterization pipeline. The resulting Ver-
ilog modules are accompanied by a comprehensive suite
of documentation, which encompasses detailed functional
descriptions for each module (found in category-specific
README_ x.md files, e.g., docs/README_ADDERS.md),
functional verification summaries (REPORT .md), and key
characterization metrics such as complexity and logic syn-
thesis results (primarily compiled in the DATASET . md file).
The overall integrated workflow for module generation,
processing, and documentation is depicted in Fig. 2. The
data collection and design process can be segmented into
several key phases: 1) LLM-assisted HDL and testbench
co-generation; 2) functional and performance verification
methodology; and 3) data compilation, structuring, and
documentation.

LLM-Assisted HDL and Testbench Co-Generation
The foundation of the dataset lies in an LLM-assisted process
for co-generating both the Verilog HDL and its associated

VOLUME 2, 2025

An IEEE Sodieties and Technical Councils Publication [l
IEEE Data Descriptions

testbenches. This phase began with the definition of clear
specifications for each module, detailing its desired function-
ality, input/output (I/O) ports, and parameters for configura-
bility. These detailed requirements were then meticulously
translated into effective prompts designed to guide the LLM
agents—a crucial step known as “Prompt Engineering.” The
prompts, as shown below, are documented in PROMPT . md
files, ensuring transparency in the generation of directives.

You are an expert in Verilog programming. You are tasked
with generating random, functional, parameterized Verilog
code and its testbench that is not available in this project,
and performing Verilog verification with Verilator and Yosys.
If it is incorrect, please identify the root cause from the
Verilator and Yosys outputs and correct the RTL and its
testbench accordingly.

Following prompt engineering, LLM agents were em-
ployed to produce initial drafts of both the Verilog RTL and
testbench code. As Verilog RTL for hardware implementa-
tion and robust testbenches demand high precision and ad-
herence to strict design principles, this LLM-generated code
served as a foundational starting point. It was then followed
by human expert review, modification, and refinement for
both the HDL and the testbenches. Human oversight was
paramount to ensure the correctness of the generated code,
synthesizability, and overall alignment with the intended
design goals and established quality standards.

Functional and Performance Verifications Methodology
The verification and characterization of the dataset was based
on three complementary methods: dynamic simulation for
functional correctness, static analysis to characterize code
quality and complexity, and logic synthesis for hardware
implementation metrics.

Functional verification (Verilator): The primary method
for verifying the functional correctness of each module was
dynamic simulation. This procedure involved executing a
dedicated C++ testbench for each design. The Verilator tool
[33] was used to compile the Verilog modules into C++
models, which were then simulated against their testbenches
to confirm that the module’s behavior matched its intended
functionality under various test scenarios.

Static code analysis (Python scripts): To complement
dynamic verification, a static analysis methodology was
employed to characterize the structural properties of
the Verilog code without execution. An analysis script
analyze_verilog_dataset.py was used to parse the
source files and extract key metrics. This included measure-
ments of code size (Lines of Code), interface complexity
(port count), and reusability (parameter count). The script
also quantified the prevalence of common HDL design
patterns, such as generate blocks and procedural loops, to
profile the coding style across the dataset.

Logic Synthesis (Yosys): To evaluate the hardware imple-
mentation characteristics of the modules, logic synthesis was
performed. The open-source synthesis tool Yosys [34] was

VOLUME 2, 2025

utilized to generate a netlist for each design. Key metrics
extracted from the synthesis reports included gate/cell count,
wire, and memory element counts for each module, as
detailed in DATASET . md.

Data Compilation, Structuring, and Documentation

The data and metrics generated throughout the previous
phases were systematically compiled, structured, and doc-
umented to ensure usability and reproducibility.

Categorization and organization: The 137 Verilog mod-
ules are organized into 24 functional categories (e.g.,
libraries/adders, libraries/voters). Each cat-
egory directory contains the corresponding Verilog source
(.v) and C++ testbench (tb_x.cpp) files.

Automated report generation: Two summary reports
are automatically generated by Python scripts. The
report.py script executes all testbenches to produce
REPORT.md, which documents the pass/fail status from
dynamic functional verification for each module. The
analyze_verilog_dataset .py script performs static
analysis and synthesis to generate DATASET .md. This re-
port contains characterization metrics, including code com-
plexity (LoC, parameter count), design pattern usage, and
hardware statistics (gate/cell count) from Yosys.

Supporting documentation: Module-level documenta-
tion, including functional descriptions, I/O specifications,
and parameter usage, is provided in category-specific
README_*.md files (e.g., docs/README_ADDERS .md).
To ensure structural consistency, initial drafts of this docu-
mentation were generated by LLM agents and subsequently
refined by human experts for technical accuracy [35]. The
top-level README . md file contains project setup, installa-
tion, and usage instructions.

VALIDATION AND QUALITY

The quality and accuracy of the dataset are validated through
a three-dimensional assessment: 1) data coverage and diver-
sity; 2) functional verification and synthesis analysis; and 3)
code quality and standards compliance.

Data Coverage and Diversity

The dataset contains 137 Verilog modules organized into 24
functional categories, including “adders,” “alu,” “arbiters,”
and so on, as shown in Fig. 3. This structure provides a
broad sample of standard digital design components. Module
complexity, measured by lines of code (LoC), is distributed
across three tiers: 38 simple (0-50 LoC), 81 medium (51—
200 LoC), and 18 complex (>200 LoC). This distribution,
illustrated in Fig. 4, supports studies targeting various design
scales. Further contributing to design variety, the dataset
incorporates 115 synchronous and 22 asynchronous designs,
enabling research on different clocking and timing strategies.
The modules are designed for reusability. On average, each
module has 2.77 configurable parameters and 11.09 ports
for connectivity. Fig. 5 shows a representative example of

419

CHEAH et al.: DESCRIPTOR: CORPUS OF SYNTHESIZABLE VERILOG RTL MODULES DATASET

Module Distribution by Category

17.5
15

Number of Modules
s
°
©

CEFfS,ELT LS L
i g P R e
& FFEF s
& SRS &qf“_oo & O
A

o o 6O O N W O S P O
& ¢°; S& & °§,‘-°Qo"‘° &

Ea
&
&

FIG. 3. Distribution of Verilog modules by functional category.

Module Complexity Distribution

Simple (0-50 LoC)

59.1%

Medium (51-200 LoC) Complex (>200 LoC)

FIG. 4. Distribution of Verilog module complexity based on lines of code
(LoC).

module configurable_conditional_sum_adder #(
// Parameters: Allow customization of the adder's properties
parameter DATA_WIDTH = 32, // bit-width of the operands and sum
parameter BLOCK_SIZE = 4 // size of each initial block for sum/
carry generation
) (
// Ports: Define the module's external interface for data input/
output

input wire [DATA_WIDTH-1:0] a,
input wire [DATA_WIDTH-1:0] b,
input wire cin,

output wire [DATA_WIDTH-1:0] sum, // Output: Sum of a, b, and cin

// Input: First operand
// Input: Second operand
// Input: Carry-in

output wire cout // Output: Final carry-out

endmodule

FIG. 5. Visual representation of a typical module interface from the dataset,
configurable_conditional_sum_adder.v, showcasing its configurable pa-
rameters and port structure.

a module’s parameter and port interface, which facilitates
flexible integration into larger systems.

Functional Verification and Synthesis Analysis
The integrity and implementability of the modules are con-
firmed through functional verification and synthesis analysis.
Functional verification: All 137 modules with testbenches
were simulated using Verilator. The results, summarized in
Table II, confirm a high degree of functional correctness.
The module pass rate was 100%, with a 100% pass rate
across 1921 individual test cases. This outcome reflects the
converged state of the dataset after iterative refinement and

420

TABLE II. Overall Verification Summary

Metric Value

Total modules scanned 137

Modules with missing testbenches 0

Total modules tested 137
Modules Passed 137
Modules Failed 0
Module Pass Rate 100%
Total tests executed 1921
Total tests passed 1921
Test Pass Rate 100%
Total runtime (s) 74.11
Average runtime per module (s) 0.54

Distribution of Cell Counts per Module

10t

Number of Modules

10°

10t 102 103 10°
Cell Count

FIG. 6. Distribution of post-synthesis gate (cell) counts for the 137 suc-
cessfully synthesized modules.

Distribution of Wire Counts per Module

Number of Modules

10 102 10° 104 10°
Wire Count

FIG. 7. Distribution of post-synthesis wire counts for the 137 successfully
synthesized modules.

validation, ensuring that only fully verified modules are
included in the final dataset release. The verification process
is efficient, with a total runtime of 74.11 s, averaging 0.54
s per module.

Synthesis analysis: To ensure physical implementability,
modules were synthesized using Yosys [34]. Synthesis re-
sults are available for all 137 modules. For these modules,
the average gate count is 1729.52, and the average wire
count is 1342.76. The distributions of both gate and wire
counts are shown in Figs. 6 and 7, respectively. These

VOLUME 2, 2025

An IEEE Sodieties and Technical Councils Publication

IEEE Data Descriptions

Design Pattern Usage

110

Number of Modules

o o R & R
& & o & o

FIG. 8. Prevalence of common Verilog design patterns observed across
the 138 modules in the dataset.

Top 20 Most Common Cell Types (All Modules)

70000

60000

50000

N
o
o
=]
S

0000

Noow

0000

Number of Modules

10000

5362
391338542921 291526412113
B e 0881077 89 66 60 52 40 35

fF FEF RS ESS N

O FETIT TSSOSO S <
S & +J* T IS S &
&

&7 <Q
« SRR YRR P IS
S & &7 T L
& KU F S
L)

\]

L O L O IL R Q
T LT

FIG. 9. Distribution of the most common logic cell types across all synthe-
sized modules.

metrics serve as observational outputs from the synthesis
process, providing transparency into structural characteristics
across the dataset. The synthesis experiments were conducted
using the default standard cell libraries provided by Yosys.
These libraries are technology-agnostic and do not rely on
any proprietary PDKs or foundry-specific timing models,
ensuring broad accessibility and reproducibility. While the
current release does not include synthesis with proprietary
or open-source PDKSs, incorporating open-source PDKs (e.g.,
ASAP7, SkyWater 130 nm, FreePDK45, and others) is a
promising direction for future extensions of this dataset.

Code Quality and Standards Compliance
Further quantitative insights into the dataset are provided
by analyzing specific code attributes and the performance
characteristics of the verification process.

Code Characteristics: The average module size is 112.29
LoC. The coding style is characterized by common Verilog
constructs: “if_else” blocks are used in 90.5% of modules
(124 instances), “for_loop” structures in 80.3% (110 in-
stances), and ‘“case” statements in 40.9% (56 instances),
as shown in Fig. 8. Analysis of the synthesized netlists
reveals the most common logic cell types, with a detailed
breakdown shown in Fig. 9. Across all synthesized modules,
the most frequent are “ANDNOT” (70 311), “OR” (67052),
and “DFFE_PP” flip-flops (47 942).

Standard Compliance: The adherence of the codebase to
major hardware description language standards was pro-

VOLUME 2, 2025

Verilog Standards Usage

Number of Files
£
&

°

% 2 o> o 2 a5 ’10,1

& % & & % &
™ & ™ o B o &

o

& & &

o B o
Standards

FIG. 10. Compliance of modules with major Verilog and SystemVerilog
standards.

grammatically verified. The verification method involved a
static analysis of each Verilog file, scanning the source code
to detect the presence of keywords and syntactical constructs
unique to specific standard revisions. For example, compli-
ance with Verilog-2001 (IEEE 1364-200) [36] was identified
by detecting features such as generate blocks or signed
data types, while the use of keywords like logic, or
interface signaled adoption of the SystemVerilog-2005
(IEEE 1800-2005) [37] standard. The results of this analysis,
summarized in Fig. 10, show that all modules are compliant
with the foundational Verilog-1995 standard. More signifi-
cantly, 60 modules utilize features from SystemVerilog-2005,
and 70 modules incorporate constructs from Verilog-2001.

RECORDS AND STORAGE

The dataset is contained in a Git repository with a defined
file structure, summarized in Table III. The libraries/
directory forms the core of the dataset. It contains 24
subdirectories, each corresponding to a specific hardware
category like adders or fifos. Within these subdirec-
tories are the Verilog source files (.v) and their associated
C++ testbenches (.cpp). Documentation is located in the
docs/ directory. This directory contains 25 Markdown
(.md) files: one for each of the 24 module categories
and an additional PROMPT . md file. The plots/ directory
stores all graphical outputs (.png) generated by the anal-
ysis scripts. The scripts/ directory contains three key
Python scripts: analyze_verilog_dataset.py for
performing dataset analysis, report . py for generating ver-
ification reports, and verilog_standard_report.py
for checking compliance with Verilog and SystemVer-
ilog standards. A Makefile in the root directory au-
tomates the execution of these scripts. The root di-
rectory also contains essential documentation files, in-
cluding the main README.md, a detailed dataset anal-
ysis in DATASET.md, a summary of verification re-
sults in REPORT.md, and Verilog coding standards
in VERILOG_STANDARDS.md. A requirements.txt
file is also included to list all necessary Python dependencies.
In addition, a continuous integration workflow is provided
in .github/workflows/ci.yml, which automatically
reruns verification and regenerates reports to ensure repro-
ducibility across environments.

421

CHEAH et al.: DESCRIPTOR: CORPUS OF SYNTHESIZABLE VERILOG RTL MODULES DATASET

TABLE lll. Summary of Primary Directories and Files in the Dataset Repository

Directory/File Description File Format(s)
libraries/ Core Verilog modules and C++ testbenches .V, .CpPpP
docs/ Detailed documentation for each module category .md
plots/ Generated plots from dataset analysis .png
scripts/analyze_verilog_dataset.py Python script for dataset analysis .py
scripts/report.py Python script for generating verification reports .py
scripts/verilog_standard_report.py Python script for Verilog standards compliance .py
Makefile Orchestrates building, testing, and reporting Makefile
DATASET .md Detailed analysis of the dataset Markdown
README . md Main repository README with overview and instructions Markdown
REPORT .md Generated verification results report Markdown
VERILOG_STANDARDS.md Verilog coding standards documentation Markdown
requirements.txt Python dependencies .txt
.github/workflows/ci.yml Continuous integration workflow for automated verification and report generation =~ YAML

INSIGHTS AND NOTES

This section explores potential applications for the CORE
dataset that extend beyond its primary function in general
EDA research. This section explores its utility as a library of
soft intellectual property (IP) cores for accelerating system-
on-chip (SoC) development, its role as a diverse benchmark
for evaluating hardware-accelerated RTL simulators, and its
value as a practical resource for education in hardware design
and computer architecture.

Soft IP Core Library for SoC Implementation

SoC design methodologies depend on reusable IP cores to
reduce development cycles and save time and cost [38], [39].
The CORE dataset serves this methodology by providing
its modules as soft IP cores [40], [41] in the form of
synthesizable Verilog RTL. Designers integrate these soft
IPs with a CPU and other components to create a complete
SoC architecture in RTL. As illustrated in Fig. 11, a single,
complete SoC design described in RTL can be implemented
on multiple, distinct physical targets. It can be synthesized
and routed to create a high-performance ASIC for mass
production, or it can be synthesized and mapped to a
reconfigurable FPGA for rapid prototyping, validation, and
lower-volume applications [42], [43], [44].

Benchmarking Hardware-Accelerated RTL Simulators

A primary bottleneck in the VLSI design cycle is the
computational expense of RTL simulation, which is
often a slow, event-driven, and single-threaded process.
Hardware acceleration of this task using platforms like
GPUs or FPGAs is a critical area of EDA research [45],
[46]. The central challenge for these accelerators is to
efficiently handle the full spectrum of digital designs—from
parallel, regular structures to irregular, control-dominated
logic [47]. A robust benchmark is therefore required to
evaluate performance across this entire spectrum. The

422

Design Phase (RTL)
CORE Dataset User-Provided
(Library of Soft IP Cores) CPU

Y V_l

SoC Integration
(Connect IP Cores)

v

Complete SoC Design
(Top-Level RTL)

FPGA Implementation

ASIC Implementation E
(Reconfigurable, Prototyping) | i

(Permanent, High-Performance)

Implementation Phase (Physical)

FIG. 11. SoC implementation flow using the CORE dataset.

CORE dataset is well-suited for this benchmarking role
due to its structural diversity. As illustrated in Fig. 12,
the dataset contains modules with regular, data-parallel
architectures (e.g., configurable_stone_adder.v,
configurable_fir_filter.v) that are ideal
for execution on SIMD-style hardware like GPUs.
It also contains modules dominated by complex,
sequential control logic (e.g., dma_controller.v,
sequence_detector_fsm.v) that challenge the
limits of parallel execution. By measuring the simulation
performance across these distinct categories, researchers
can quantitatively assess the strengths and weaknesses of
a given hardware accelerator. Furthermore, the extensive
parameterization of the modules allows for scalability
testing, providing a method to measure how an accelerator’s
performance changes as the size and complexity of the
design increase.

VOLUME 2, 2025

An IEEE Sodieties and Technical Councils Publication [l
IEEE Data Descriptions

CORE Dataset Modules

Parallel & Regular Irregular & Control-Dominated

-configurable_fir_filter.v
-configurable_kogge_stone_adder.v -sequence_detector_fsm.v
-parameterized_fft.v -memory_controller.v

Input for Best-Case Testing Input for Worst-Case Testing

-dma_controller.v

GPU/FPGA Based RTL Simulator

Benchmark Results

Y

Performance on Parallel Designs
(Expected: High Speedup)

Y

Performance on Control Logic
(Tests Worst-Case Behavior)

FIG. 12. Benchmarking hardware simulators with CORE.

Educational Resource for Practical Hardware Design

As an educational asset, the dataset bridges the gap between
theoretical hardware concepts and practical implementation
in the field of digital electronics. It enables students to
develop practical skills in design, verification, and integra-
tion by utilizing Verilog modules and their accompanying
testbenches. Moreover, the dataset can serve as a base
for case studies in advanced courses such as digital VLSI
design [48] and computer architecture [49], discussing how
parameterization impacts hardware resources.

SOURCE CODE AND SCRIPTS

All Verilog source code, testbenches, and analysis scripts
are publicly available on GitHub at https:/github.com/
sjtu-yongfu-research-grp/core/tree/main. The repository’s
libraries/ directory houses the Verilog files (.v)
and their corresponding C++ testbenches (tb_.cpp). The
root directory contains a Makefile and several Python
scripts that automate the data processing workflows. The
Makefile serves as the core automation tool, providing
targets to manage verification and synthesis systematically.
Key targets include make verify <module_name>
to execute a specific module’s testbench and make
synth_<module_name> to synthesize a module with
Yosys. The entire suite of testbenches can be exe-
cuted with make verify_all. These Makefile tar-
gets are orchestrated by the repository’s Python scripts.
The report.py script automates the testing process by
invoking the make commands and compiling the results
into a comprehensive REPORT .md summary. For dataset
characterization, analyze_verilog_dataset.py per-
forms static analysis and utilizes Yosys to gather synthesis-
based metrics, such as gate counts, generating a detailed
DATASET.md report with statistical plots. Additionally,
the verilog_standard_report.py script analyzes
the source code to determine compliance with vari-
ous Verilog and SystemVerilog standards, producing the
VERILOG_STANDARDS.md report. Specific versions of

VOLUME 2, 2025

third-party software used in the development and validation
process include: Verilog Simulators: Verilator 5.036, Yosys
0.54 + 15. C++ Compiler: GCC 11.4.0, Clang 14.0.0.
Python: Python 3.10.12. Git: Git 2.34.1.

ACKNOWLEDGMENT
KK.C, EQC. YZ, ZL, YJ, X.G., HR,, and YL. are
the main authors of this work. K.K.C., Y.Z., X.G., and
Y.L. designed the data collection system, data cleaning, and
prepared the data for publication. All the authors reviewed
the manuscript.

The authors have declared no conflicts of interest.

REFERENCES

[1] Y. Zhang and K. L. Low, “Descriptor: MOSFET electrical simulation
dataset (MESD),” IEEE Data Descr., vol. 1, pp. 27-32, 2024.

[2] T. Kim, “Challenges on design and technology co-optimization:
Design automation perspective,” in Proc. IEEE Int. Midwest Symp.
Circuits Syst. (MWSCAS), 2023, pp. 212-216.

[3] F. Sheng and R. Tang, “Descriptor: Emerging semiconductor device
electrical dataset (ESDED),” IEEE Data Descr., Dec. 2025.

[4] Z. Zhang and R. Wang, “New-generation design-technology co-
optimization (DTCO): Machine-learning assisted modeling frame-
work,” in Proc. Silicon Nanoelectronics Workshop (SNW), 2019,
pp. 1-2.

[5] L.Liand]J.Li., “Generalized rapid TFT modeling (GRTM) framework
for agile device modeling with thin-film transistors,” IEEE J. Flexible
Electron., vol. 3, no. 5, pp. 190-196, May 2024.

[6] H. Dixit and V. B. Naik, “TCAD device technology co-optimization
workflow for manufacturable MRAM technology,” in Proc. IEEE Int.
Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020,
pp. 13.5.1-13.5.4.

[71 M. Abedin and S. Khan, “DTCO guided process integration: Case
studies from FEOL & BEOL with BSPDN topic: DTCO/DFM,”
in Proc. Annu. SEMI Adv. Semicond. Manuf. Conf. (ASMC), 2024,
pp. 1-5.

[8] C. Wang and Y. Zhang, “D2D-GPT: Leveraging incremental learning
GPT for seamless design rule conversion across EDA tools,” in Proc.
IEEE Asia Pacific Conf. Circuits Syst. (APCCS), 2024, pp. 110-114.

[9] R. Tang and C. Wang, “D2D-LLM+: Unified translation between

design rules/manuals and DRC—Bridging inconsistencies for accurate
DRC implementation,” in Proc. IEEE Int. Conf. Artif. Intell. Circuits
Syst. (AICS), 2025, pp. 1-5.

M. Lin and D.-H. Bui, “LogicCraft: LLM-assisted optimization of
netlist to layout for complex custom standard cell designs,” in Proc.
IEEE Int. Conf. Artif. Intell. Circuits Syst. (AICS), 2025, pp. 1-5.

Z. Stanojevi¢ and G. Strof, “Cell Designer—A comprehensive TCAD-
based framework for DTCO of standard logic cells,” in Proc. Eur.
Solid-State Device Res. Conf. (ESSDERC), 2018, pp. 202-205.

L. Li and W. Lu, “SCEval: An open-source platform for standardized
evaluation and optimization of standard cell libraries in next-generation
process nodes,” in Proc. Int. Conf. Electron. Inf. Commun. (ICEIC),
2025, pp. 1-4.

C. Ma and Q. Zhang, “IGZO-TFT-PDK: Thin-film flexible electronics
design kit, standard cell and design methodology,” IEEE Open J.
Circuits Syst., vol. 2, pp. 757-765, 2021.

J. Kwak, G. Choe, and S. Yu, “Design-technology co-optimization
for stacked nanosheet oxide channel transistors in monolithic 3D
integrated circuit design,” IEEE Trans. Nanotechnol., vol. 23, pp. 622—
628, 2024.

K. Chen and C. Ma, “FreePDKI5TFET: An open-source process
design kit for 15 nm CMOS and TFET devices,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), May 2021, pp. 1-5.

F. Brglez, P. Pownall, and R. Hum, “Accelerated ATPG and fault
grading via testability analysis,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), 1985, pp. 695-698.

F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), 1989, pp. 1929-1934.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

423

https://github.com/sjtu-yongfu-research-grp/core/tree/main
https://github.com/sjtu-yongfu-research-grp/core/tree/main

CHEAH et al.: DESCRIPTOR: CORPUS OF SYNTHESIZABLE VERILOG RTL MODULES DATASET

[18]
[19]
[20]
[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

424

jpsety, “Verilog Benchmark, EPFL and ISCAS85,” 2020. [Online].
Available: https://github.com/jpsety/verilog_benchmark_circuits

D. K. Houngninou, “benchmark,” (2025). Accessed: Sep. 22, 2022.
[Online]. Available: https://github.com/davidkebo/benchmark

G. De Micheli, “The EPFL combinational benchmark suite,” in Proc.
Int. Workshop Logic Synthesis (IWLS), 2015, pp. 121-134.
OpenCores, “Opencores: Open source hardware IP-cores,” (2024).
Accessed: Jun. 5, 2025. [Online]. Available: https://opencores.org

B. S. Group, “Basejump stl,” (2025). Accessed: Jun. 13, 2025. [On-
line]. Available: https://github.com/bespoke-silicon-group/basejump_
stl

M. B. Taylor, “Basejump STL: Systemverilog needs a standard tem-
plate library for hardware design,” in Proc. ACM/ESDA/IEEE Des.
Automat. Conf. (DAC), 2018, pp. 1-6.

O. Kindgren, “FuseSoC,” (2025). Accessed: Jun. 13, 2025. [Online].
Available: https://github.com/olofk/fusesoc

Fusesoc, “Fusesoc Cores,” (2025). Accessed: Jun. 13, 2025. [Online].
Available: https://github.com/fusesoc/fusesoc-cores/tree/master

O. Kindgren, “Invited paper: A scalable approach to IP management
with FuseSoC,” (2019). Accessed: Jun. 13, 2025. [Online]. Available:
https://osda.gitlab.io/19/kindgren.pdf

S. Thakur and B. Ahmad, “Verigen: A large language model for verilog
code generation,” ACM Trans. Des. Autom. Electron. Syst., vol. 29,
pp. 1-31, 2023.

M. Liu and N. Pinckney, “Invited paper: Verilogeval: Evaluating large
language models for verilog code generation,” in Proc. IEEE/ACM Int.
Conf. Comput. Aided Des. (ICCAD), 2023, pp. 1-8.

J. D. Zamfirescu-Pereira and E. Jun, “Beyond code generation: LLM-
supported exploration of the program design space,” in Proc. CHI
Conf. Human Factors Comput. Syst., 2025, pp. 143-156.

A. B. Chowdhury and S. Thakur, “Towards the imagenets of
MLA4EDA,” in Proc. IEEE/ACM Int. Conf. Computer Aided Des.
(ICCAD), 2023, pp. 1-7.

IEEE Standard Hardware Description Language Based on the Ver-
ilog(R) Hardware Description Language, IEEE Standard 1364-1995,
pp. 1-688, 1996.

IEEE Standard for SystemVerilog—Unified Hardware Design, Specifi-
cation, and Verification Language, IEEE Standard 1800-2012 (Revi-
sion IEEE Std 1800-2009), pp. 1-1315, 2013.

W. Snyder and V. Committers, “Verilator: High-performance, open-
source verilog HDL simulator,” (2025). Accessed: May 21, 2025.
[Online]. Available: https://www.veripool.org/verilator/

[34]

[35]

[36]
[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

C. Wolf, “Yosys open synthesis suite,” 2012. [Online]. Available:
https://github.com/YosysHQ/yosys

R. Zhong and X. Du, “LLM4EDA: Emerging progress in large
language models for electronic design automation,” 2023. [Online].
Available: https://arxiv.org/abs/2401.12224

IEEE Standard Verilog Hardware Description Language, IEEE Stan-
dard 1364-2001, 2001.

IEEE Standard for SystemVerilog: Unified Hardware Design, Specifi-
cation and Verification Language, IEEE Std 1800-2005, 2005.

Y. Zorian, E. J. Marinissen, and S. Dey, “Testing embedded-core-based
system chips,” Computer, vol. 32, no. 6, pp. 52-60, Jun. 1999.

Z. Guiqing and F. Tao, “The SoC design and implementation of digital
protective relay based on IP cores,” in Proc. Int. Conf. Power System
Technol., vol. 4, 2002, pp. 2580-2583.

M. El-Assal and M. Bayoumi, IIII “MAP decoder architecture: Soft
IP for SoC applications,” in Proc. Midwest Symp. Circuits Syst., 2002,
pp. 156-178.

X. Pang and D. Yu, “Design and application of IP core in SoC
technology,” in Proc. Int. Symp. Inf. Sci. Eng., 2010, pp. 71-74.

F. Abid and N. Izeboudjen, “Technology-independent approach for
FPGA and ASIC implementations,” in Proc. Int. Conf. Elect. Eng.
(ICEE), 2015, pp. 1-4.

F. Abid and N. Izeboudjen, “ASIC implementation of an OpenRISC-
based SoC for VoIP application,” in Proc. Int. Conf. Inf. Commun.
Syst. (ICICS), 2015, pp. 64-67.

M. Hammerquist and R. Lysecky, “Design space exploration for
application specific FPGAS in system-on-a-chip designs,” in Proc.
IEEE Int. SOC Conf., 2008, pp. 279-282.

Z. Guo and Y. Zhang, “GEM: GPU-accelerated emulator-inspired RTL
simulation,” in Proc. Des. Automat. Conf. Piscataway, NJ, USA: IEEE,
2025.

R. S. Molina and V. Gil-Costa, “High-level synthesis hardware design
for FPGA-based accelerators: Models, methodologies, and frame-
works,” IEEE Access, vol. 10, pp. 90429-90455, 2022.

B. Reagen and R. Adolf, “MachSuite: Benchmarks for accelerator de-
sign and customized architectures,” in Proc. IEEE Int. Symp. Workload
Characterization (IISWC), 2014, pp. 110-119.

J. Williams, Digital VLSI Design with Verilog: A Textbook from Silicon
Valley Technical Institute. New York: Springer, 2014.

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach, 6th ed. San Mateo, CA, USA: Morgan Kaufmann
Publishers, 2019.

VOLUME 2, 2025

https://github.com/jpsety/verilog_benchmark_circuits
https://github.com/davidkebo/benchmark
https://opencores.org
https://github.com/bespoke-silicon-group/basejump_stl
https://github.com/bespoke-silicon-group/basejump_stl
https://github.com/olofk/fusesoc
https://github.com/fusesoc/fusesoc-cores/tree/master
https://osda.gitlab.io/19/kindgren.pdf
https://www.veripool.org/verilator/
https://github.com/YosysHQ/yosys
https://arxiv.org/abs/2401.12224

