
ReNoC-ML: Reliability-Aware Network-on-Chip
Performance Modeling using Machine Learning

Zhuofan Lin1,*, Yang Wei Lim1, Yongfu Li2, Fakhrul Zaman Rokhani1,**

1Dept. of Comp. and Comm. Sys. Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor, Malaysia
2School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China

Email: *209471@student.upm.edu.my, **fzr@upm.edu.my

Abstract—Network-on-Chip (NoC) architectures have emerged
as a promising solution to address the interconnection chal-
lenges inherent to complex multi-processor integrated circuits.
Nevertheless, the increase network size of NoC leads to a time-
consuming process for design space exploration (DSE) using tra-
ditional cycle-accurate simulator. This study proposed a machine
learning (ML) approach to accelerate the prediction of NoC
performance while incorporating considerations of reliability-
related parameters (ReNoC-ML). A bespoke cycle-accurate NoC
simulator was employed to generate a comprehensive dataset.
Following preprocessing, three ML algorithms, namely Random
Forest (RF), XGBoost, and Multilayer Perceptron (MLP) were as-
sessed for their predictive accuracy and computational efficiency.
The XGBoost model exhibited superior performance, attaining an
R2 score of 0.9502, a mean absolute error (MAE) of 616.4072, and
a speedup of 107 in comparison to the cycle-accurate simulator.

Index Terms—Error Correction Code Scheme, Machine Learn-
ing, Network-on-Chip, Performance Modeling, Reliability

I. INTRODUCTION

THE increasing complexity of multi-processor integrated
circuit designs is leading to performance saturation, pri-

marily due to the bottleneck of traditional bus-based inter-
connection methods. To address this challenge, NoC, drawing
inspiration from the computer networking theory, is proposed.
By embodying the packet-based transmission principles, NoC
facilitates modular, scalable, and high-bandwidth communica-
tions [1]. However, similar to other communication systems,
NoC faces reliability challenges, particularly at the high op-
erating frequency and low operating voltage [2]. Permanent,
intermittent, and transient faults result from incorrect interpre-
tation of the destination IP in semiconductor devices. There-
fore, ECC schemes are necessary, which help in detecting
and correcting errors, thereby enhancing the reliability of data
transmission in NoC.

In the system design level of NoC, the procedure of DSE is
crucial. NoC has various parameters which affect the perfor-
mance like network size, topology, injection rate, ECC scheme,
BER, etc. The traditional method for performance modeling is
to utilize a cycle-accurate simulator (e.g., Booksim [3], Noxim
[4], PyOCN [5]) which simulates a lower abstraction to acquire
an accurate result.

Another method is the queuing theory-based analytical
model, which characterizes the behavior of NoC components
using mathematical equations [6], [7]. An analytical model,
grounded in M/G/1/K queuing theory, is proposed to provide

a 5% difference to the simulation results for a 4×4 mesh NoC
[6]. Another recent research presents a further evolution, which
presents a generalized analytical model that conceptualizes
NoC packet flow as an open, feed-forward queuing network
[7]. This analytical model allows more tunable parameters as
the inputs. However, the accuracy of this analytical method
drops as the network size expands.

With the popularity of ML technology in recent years, an
ML-based approach is regarded as an alternative way for
the performance modeling to tackle the problem of runtime
for large and complex NoC architectures [8]–[10]. These
works generated the dataset based on Booksim 2.0 or Noxim
for performance metrics (e.g., average delay, average hop,
throughput, etc) of NoCs. They adopted ML algorithms like
SVR, Linear Regression, or customized ANN, which per-
formed favorably for the prediction. However, these works did
not include the impact on the performance of reliability-related
parameters (e.g., BER, ECC schemes).

To fill up the current research gap of lacking consideration
of reliability-related parameters on NoC performance model-
ing, a dataset was built from a customized cycle-accurate NoC
simulator which includes reliability-related parameters such as
BER and ECC schemes [11]. Three different ML algorithms
namely Random Forest (RF), XGBoost, and Multilayer Per-
ceptron (MLP) are employed to model the NoC performance
prediction. XGBoost shows outperform results than other MLs,
which attained R2 score of 0.9502, a mean absolute error
(MAE) of 616.4072, and a speedup of 107 in comparison to
the cycle-accurate simulator.

The rest of this article is organized as follows, Section II
presents the detailed framework in detail. Section III provides
the experimental results, and Section IV concludes the work
and reveals the future directions of the research.

II. METHODOLOGY

The proposed methodology, as illustrated in Fig. 1, outlines
the overall process for finding the optimal model for different
algorithms. The dataset is necessary to be generated and
preprocessed accordingly for training and testing ML models.
Therefore, hyperparameter tuning is necessary, the training
data are utilized to build models based on different algo-
rithms, employing various combinations of hyperparameters.
Concurrently, the performance of trained models is evaluated
by the testing data in optimal model selection. By using

Fig. 1. Overall methodology to find the optimal model of different algorithms

the ranking algorithm, the performance metrics are compared
among all the models to select the optimal models of the 3
algorithms. Then the best-performed algorithm for the NoC
performance modeling can be identified by comparing these
optimal models.

A. Dataset

To develop an accurate and effective ML model, a bespoke
cycle-accurate simulator, including the reliability-related pa-
rameters, is employed as the golden reference to generate the
dataset [11]. To efficiently evaluate the performance of the
ML model in solving this problem, the combination of inputs
for the simulator should be judiciously selected based on the
correlation of input parameters and the hardware limitation
of the host PC. Based on insights from empirical studies
[8]–[10], the key parameters that significantly impact the
NoC performance can be identified. These include topology,
network size, injection rate, packet size, routing algorithm,
etc. The parameter selection for ML modeling depends on
their impact on the NoC performance outcomes, especially
the average delay. In this study, reliability-related parameters
such as ECC schemes and BERs are two of the main focuses.
Table I shows the parameters configuration for the simulator,
where four parameters (i.e. network size, injection rate, BER,
and ECC scheme) are manipulated to form different NoC
architectures. Network size and injection rate have the most
impact on the performance of the NoC. The higher BER
range from 10−2 to 10−9 is chosen for the ML modeling
since smaller BER (i.e. < 10−9) does not have a significant
impact on NoC performance. All the supported ECC schemes
by the simulator are selected, which include Forward Error
Correction (FEC), Automatic Repeat Request (ARQ), and
Hybrid ARQ (HARQ).

Data preprocessing is required for the inputs and labels
to improve the result accuracy and optimize the training of
ML models as the data have wildly different ranges [12].
In this study, several data preprocessing techniques are used
for the ML training process. One-hot encoding is required
to transform categorical data into one-dimensional numerical
vectors, enabling efficient learning from string-like data like
ECC schemes. Logarithmic scaling (i.e. log10) is implemented

TABLE I
CONFIGURATION OF SIMULATOR

Input Parameter Interval
Constant Parameters

Topology Mesh -
Routing
Algorithm XY -

Traffic Pattern Uniform -
Injection Type Periodic -
Buffer Size 8 -
Number of Vir-
tual Channels 4 -

Packet Size 8 Flits -
Flit Size 32 Bits -

Sweeping Parameters
Network Size 2 - 9 +1
Injection Rate 0.01 - 0.91 +0.05
BER 10−2 − 10−9 ×10−1

ECC Scheme DUP, DAP, DTDP 7ED,
DTDP SEC6ED, JTEC, SQED Sweep

for features that have an ultra-wide range of magnitude, such
as BER. Standardization is also important for algorithms that
are sensitive to feature scaling. This can be achieved by
subtracting the mean (µ) from the features and dividing by
its standard deviation (σ).

For the model train-test splitting, 80% is allocated for the
training set, while the remaining 20% is reserved for testing.
This division ensures a substantial amount amount of data
is used for model training, while still retaining a portion for
evaluating the generalization of the trained model.

B. Evaluation Metrics
For the regression problem, two evaluation metrics, co-

efficient of determination (R2) and MAE, are employed to
describe the accuracy of the predicted results. Another key
metric is runtime speedup, which is aimed at measuring the
improvement of computation time consumption.

R2 quantifies the proportion of the variance in the dependent
variable that is predictable from the independent variables. A
R2 of 1 indicates the flawless fitting of the predicted value and
original data. R2 can be calculated as

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(1)

where yi and ŷi are the actual and predicted values respec-
tively, and ȳ denotes the average value of the testing data. n
is the total number of samples in the testing data.

MAE measures the average magnitude of errors between
predicted and actual values. With a lower MAE, the model
shows a higher accuracy in the prediction. The calculation
can be expressed by

MAE =

∑n
i=1 |yi − ŷi|

n
(2)

where yi and ŷi are the actual and predicted values respec-
tively, and ȳ denotes to the average value of the testing data.
n is the total number of samples in the testing data.

TABLE II
HYPERPARAMETER SPACE OF RF, XGBOOST AND MLP

Hyperparameter Value
Random Forest

n estimators 50, 100, 200, 300
max features 1, 2, 3, 4
max depth None, 3, 5, 7, 10

XGBoost
max depth None, 3, 5, 7, 10
eta 0.01, 0.05, 0.1, 0.2
gamma 0, 0.1, 0.5, 1.5

Multilayer Perceptron

number of neurons
[64, 32, 16], [128, 64, 32],
[256,128, 64]

activation function Sigmoid, ReLU, Tanh
learning rate 0.001, 0.003, 0.005, 0.007, 0.009

To measure the runtime speedup of ML models, the equa-
tions below is utilized to obtain the average speedup compared
with the simulator.

Speedup =

∑n
i=1(ti/t̂i)

n
(3)

where ti is the actual runtime using the simulator, and t̂i is
the runtime of predicting using trained ML models.

C. Optimal Model Selection

Hyperparameter auto-tuning by using the Grid Search (GS)
algorithm is performed to further optimize the ML model
prediction accuracy before the model evaluation and selection.
The hyperparameter space for different ML algorithms in the
experiment is listed in the Table II. Different machine learning
models consist of different hyperparameters to tune when
optimizing the model. The trained models with different hy-
perparameters and their results of R2 and MAE on the testing
dataset are recorded for the GS algorithm implementation. In
the optimal model selection, a ranking algorithm based on the
comparison of performance metrics of trained models is used
to find the optimal model from the three ML algorithms.

III. EXPERIMENTAL RESULTS

Throughout the optimal model selection based on the pre-
processed dataset using the proposed ReNoC-ML framework,
XGBoost shows an outstanding performance in both accura-
cies (i.e., the highest R2 and lowest MAE) and runtime as
summarized in Table III. To verify the accuracy of the optimal
XGBoost model, two characteristic plots of NoC ECC schemes
are generated. First, the plot of average delay versus injection
rate shows how the performance varies when the data volume
per unit cycle is increasing. In the experiment, the range of
BER from 10−2 to 10−7 was used for generating the plots as
shown in Fig. 2, different ECC schemes have more varying
inflection points for average delay at larger BER. The fitting of
the prediction is overall satisfying. However, it can be observed
that there are inaccurate prediction that usually happens in the
inflection point for large BER like 10−2 and 10−3.

TABLE III
OPTIMAL MODEL RESULTS FOR EACH ALGORITHM

Algorithm R2 MAE Speedup
RF 0.9271 830.8500 ×105

XGBoost 0.9502 616.4072 ×107

MLP 0.9375 795.8215 ×106

*The result was evaluated by the testing dataset.

(a) BER=10−2 (b) BER=10−3

(c) BER=10−4 (d) BER=10−5

(e) BER=10−6 (f) BER=10−7

Fig. 2. Average delay vs injection rate under different ECC schemes

The plot for smaller BERs shows better fitting results from
the observation. The reason may be due to the imbalanced
dataset for different BER values. This can be observed from

Fig. 3. KDE plot for average delay under different BERs

the Kernal Density Estimation (KDE) in Fig. 3, which shows
the distribution of average delay for different BER values in
the training dataset. The data with smaller BER (i.e., 10−4-
10−7) have a similar distribution for the average delay, which
can be considered as the majority in the dataset, while the
distribution of data at larger BER (i.e., 10−2 and 10−3) are
the minority. Even though preprocessing techniques have been
implemented to optimize the distribution, the impacts still
existed. It is also the reason why XGBoost has the best
performance out of the three algorithms. In RF and MLP, the
impact was enlarged since they did not have a strategy to deal
with the issue. XGBoost performs better since it integrates the
following characteristics that can help mitigate the impact of
imbalanced data: tree-based structure, built-in regularization,
and scale in-variance. The same reason could be used to
explain the reason for the inaccuracy in inflection points. It
shows that the distribution is bimodal, which means it has
two distinct peaks at both low values and very high values.
Therefore, the density of the inflection point is quite low,
which causes another imbalanced situation. This imbalance
of the dataset usually makes the algorithm hard to learn
accurately in this domain and causes the erroneous prediction
[13].

Another characteristic is presented by average delay versus
BER shown in Fig. 4 which contains the plots with different
injection rates from 0.01 to 0.26. It can be observed that
the accuracy is acceptable as there are only a few inaccurate
predictions with small differences. On the other hand, the
prediction points show an expected trend of average delay
affected by increasing BER for different ECC schemes.

IV. CONCLUSION

This paper demonstrates a rapid and accurate NoC perfor-
mance prediction involving reliability-related parameters (i.e.
BER and ECC scheme) through the ML approach. Three
different ML approaches, RF, XGBoost, and MLP, were im-
plemented with certain hyperparameter tuning strategies to
improve the prediction accuracy. XGBoost shows up to 107

times speedup as compared to the cycle-accurate simulator
and the highest R2 score of 0.95. The proposed ML-based NoC

(a) Injection Rate=0.01 (b) Injection Rate=0.06

(c) Injection Rate=0.11 (d) Injection Rate=0.16

(e) Injection Rate=0.21 (f) Injection Rate=0.26

Fig. 4. Average delay vs BER under different ECC schemes

performance predictor ReNoC-ML can be used for NoC design
parameter optimization via the DSE flow. This work can be
further extended by addressing the imbalanced dataset and
expanding the prediction domain with different parameters.

REFERENCES

[1] N. E. Jerger, T. Krishna, and L.-S. Peh, On-Chip Networks: Second
Edition, 2nd ed. Morgan & Claypool Publishers, 2017.

[2] W. N. Flayyih, K. Samsudin, S. J. Hashim, F. Z. Rokhani, and Y. I.
Ismail, “Crosstalk-Aware Multiple Error Detection Scheme Based on
Two-Dimensional Parities for Energy Efficient Network on Chip,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 7,
pp. 2034–2047, 2014.

[3] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E.
Shaw, J. Kim, and W. J. Dally, “A detailed and flexible cycle-accurate
Network-on-Chip simulator,” in 2013 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2013, pp.
86–96.

[4] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, “Im-
proving the energy efficiency of wireless Network on Chip architectures
through online selective buffers and receivers shutdown,” in 2016 13th
IEEE Annual Consumer Communications & Networking Conference
(CCNC). IEEE Press, 2016, pp. 668–673.

[5] C. Tan, Y. Ou, S. Jiang, P. Pan, C. Torng, S. Agwa, and C. Batten,
“PyOCN: A Unified Framework for Modeling, Testing, and Evaluating
On-Chip Networks,” in 2019 IEEE 37th International Conference on
Computer Design (ICCD), 2019, pp. 437–445.

[6] J. Wang, Y.-b. Li, and C. Wu, “An analytical model for Network-on-
Chip with finite input buffer,” Frontiers of Computer Science in China,
vol. 5, pp. 126–134, 2011.

[7] A. V. Bhaskar and T. Venkatesh, “Performance analysis of network-
on-chip in many-core processors,” Journal of Parallel and Distributed
Computing, vol. 147, pp. 196–208, 2021.

[8] A. Kumar and B. Talawar, “Machine Learning Based Framework to
Predict Performance Evaluation of On-Chip Networks,” in 2018 Eleventh
International Conference on Contemporary Computing (IC3), 2018, pp.
1–6.

[9] B. Bhowmik, P. Hazarika, P. Kale, and S. Jain, “AI Technology for NoC
Performance Evaluation,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 68, no. 12, pp. 3483–3487, 2021.

[10] Y. R. Muhsen, N. A. Husin, M. B. Zolkepli, N. Manshor, A. A. J.
Al-Hchaimi, and H. M. Ridha, “Enhancing NoC-Based MPSoC Perfor-
mance: A Predictive Approach With ANN and Guaranteed Convergence
Arithmetic Optimization Algorithm,” IEEE Access, vol. 11, pp. 90 143–
90 157, 2023.

[11] W. N. Flayyih, “Crosstalk Aware Error Control Coding Techniques for
Reliable and Energy Efficient Network on Chip,” Ph.D. dissertation,
Universiti Putra Malaysia, 2014.

[12] F. Chollet, Deep Learning with Python. Manning Publications, 2021.
[13] Y. Yang, K. Zha, Y. Chen, H. Wang, and D. Katabi, “Delving into

deep imbalanced regression,” in International conference on machine
learning. PMLR, 2021, pp. 11 842–11 851.

