
FCP-LLM: Functional Coverpoint Plan Generation
Using LLM in Early Design Verification Stage

Zhuofan Lin1,2, Zixian Guo1,2, Chao Wang1, Ruixin Zheng1, Yuxin Ji1,
Yang Wei Lim2, Yuhang Zhang1, Fakhrul Zaman Rokhani2,∗, and Yongfu Li1,∗

1. Department of Micro-Nano Electronics, Shanghai Jiao Tong University, China
2. Department of Computer and Communication Systems Engineering, University Putra Malaysia, Malaysia

*Email: fzr@upm.edu.my, yongfu.li@sjtu.edu.cn

Abstract—During the design process of digital integrated
circuits, high-quality coverpoint plan plays a crucial role, as
it guides the verification process. This challenging task is
accomplished by experienced engineers who consume a massive
amount of time to extract critical information from design
specifications. In this work, we present the FCP-LLM framework
that is designed to understand both design specifications and
Hardware Description Language (HDL) code to focus on
extracting critical edges of designs’ ports. It consists of three
main components: CP-Generator for creating coverpoint plans,
CP-Reviewer for refining the plans, and SV-Coder for generating
SystemVerilog code. It has been evaluated with a series of
benchmark circuits, comprising 74X-Series circuits and custom
digital designs. Our experimental results show that FCP-LLM
outperforms the baseline work with an average improvement
of exceeding 300%, demonstrating a better balance between
effectiveness and redundancy in coverpoint plan generation.

Index Terms—Design Verification, Functional Coverpoint,
Large Language Model

I. INTRODUCTION

AS the complexity of digital IC designs explodes, over
50% of the total design cost is now attributed to design

verification in the design cycle [1]. Testbench is designed
for driving stimulus signals into RTL designs and inspecting
outputs to validate the designs. The progress of this verification
is measured by a predefined metric, coverage, which not only
evaluates the quality of the testbench but also indicates the
completion of the verification process.

The coverage can be categorized into three types: code
coverage, assertion coverage, and functional coverage [2].
Code coverage indicates if the structural elements of design
such as branches, state transitions, and code lines are tested
[3]. Therefore, 100% code coverage is an inherent property of
the design. Assertion coverage and functional coverage focus
on specific stimulus signals as per the design specification
[4]. In particular, Assertion coverage examines the relations
between design signals, while functional coverage checks
if design implementation matches design intent [5], [6].
Both techniques are applied using SystemVerilog code and
integrated into the verification environment. To formulate a
reference of 100% functional coverage, defining high-quality
and low-redundancy coverpoint plan is an important process.

This work is supported by the National Science Foundation of China under
Grant No. 62350610271 and No. 6230413. Fakhrul Zaman Rokhani and
Yongfu Li are the corresponding authors of this work.

Fig. 1. Functional Coverpoint Plan Generation, FCP-LLM Workflow

Design of coverpoint plans is time-consuming coding
process. With the rapid development of Large Language Model
(LLM), it has shown impressive capability in comprehension
and inference, which produces versatility of studies on
hardware task [7]–[11]. For design verification, recent
works have demonstrated the significant potential in LLM,
emphasizing their strengths in comprehension and inference
tasks [12]–[16]. For code coverage, LLMs have been applied
to analyze RTL structures and interpret coverage reports to
generate stimuli [12]. In the case of assertion-based coverage,
LLMs assist in coding SystemVerilog Assertions (SVA) from
both human-written descriptions and HDL code [13], [14].
LLMs also improve the efficiency of stimulus generation
in achieving functional coverage convergence compared to
traditional constrained-random testing [15].

Motivated by these works, we propose FCP-LLM to
leverage LLM’s capability in understanding and writing
predefined functional coverpoint plan in the early design
verification stage as shown in Fig. 1. To facilitate evaluation,
we created a benchmark suite comprising digital circuit
designs and their corresponding descriptions, with target
coverpoint plans as a golden reference. Additionally, we
established a metric to assess the quality of the generated
functional coverpoint plans, enabling an objective evaluation
of the outputs produced by the LLMs.

The rest of this article is organized as follows. Section
II explains the proposed framework in detail. Section III
provides experimental results in the benchmark suite. Section
IV concludes the work and reveals future directions.

1



2

II. DETAILS OF FCP-LLM METHODOLOGY

FCP-LLM is an LLM prompt-based framework to enhance
functional coverpoint plan generating in the early design
verification stage. As shown in Fig. 1, the framework operates
in two stages, both driven by different prompt modules. Stage
1 works on coverpoint plan generation and self-refinement,
focusing on extracting critical edges from natural language
specifications and a portion of HDL code. Coding is omitted
at this stage to minimize token usage. Stage 2 handles the
generation of SystemVerilog code by LLM with the optimized
prompt modules and corrects syntax errors using feedback
from the compiler.

The framework consists of three prompt modules: (a)
CP-Generator iteratively generates a coverpoint plan in
natural language for ports declaration of the target design;
(b) CP-Reviewer provides recommendations to CP-Generator
and improves the generated coverpoint plan; and (c)
SV-Coder converts the natural language coverpoint plan into
SystemVerilog code for easy integration. Together, these
modules form an efficient workflow for generating coverpoint
plan for critical edges.

A. Coverpoint Plan Generator

To precisely extract critical functional coverpoint plan for
designs, it is crucial that our CP-Generator can interpret the
design specifications in both HDL code and natural language.
However, LLM models may produce hallucinations when
processing complex specifications and HDL code due to
limited SoC design knowledge in their training datasets [17].
Thus, developing an optimized prompt module that ensures
concise yet precise input is a key challenge.

In this work, we design the prompt structure as illustrated
in Fig. 2. In manual coverpoint plan design, the design
specification serves as the golden reference. Following this
principle, we provide the full design specification to the
CP-Generator. Since the development of the coverpoint plan
is part of the design verification stage, where HDL code
correctness is not assured. Therefore, relying on incorrect
HDL code can lead to potential errors of critical edges.
To eliminate this problem, the CP-Generator should only
uses the port declaration of the design as a reference. Our
method reduces token usage and improves precision by
eliminating the potential influence of erroneous HDL code.
Hence, the CP-Generator can produce a coverpoint plan in
natural language, as shown in Fig. 2. Same as the prompt in
CP-Generator, the response is formatted into port name and
values.

B. Coverpoint Plan Reviewer

As the quality of initial outputs from LLM is not always
guaranteed to be accurate, we introduce CP-Reviewer to refine
the results generated by CP-Generator so that it allows a
self-reflection thought process in the LLM. As shown in Fig.
2, the prompts are designed based on empirical studies and
focus on two key aspects [2]:

• Coverpoints should target corner cases without attempting
to traverse all possible values of the bus size.

Fig. 2. Prompts of Stage 1 in FCP-LLM, and response example of
ISCAS74283 4-bit fast adder. This stage creates a comprehensive natural
language coverpoint plan.

• Coverpoints should focus on key features relevant to
functional intents, including essential values that activate
different functions.

As LLMs can sometimes stubbornly and persistently repeat
certain behaviors [18], we define a threshold value, Executions,
defaulted to trigger CP-Reviewer once during the workflow to
improve the generated coverpoint plan.

C. SystemVerilog Coder

As shown in Fig. 3, the V-Coder generates SystemVerilog
code based on the natural language coverpoint plan from Stage
1. Since LLMs can produce varying styles of SystemVerilog
code, a predefined template is used to ensure the generated
code is suitable for plug-in usage and analysis. Additionally,
a SystemVerilog compiler is integrated into Stage 2 to provide
SV-Coder with error reports, enhancing the LLM’s ability to
produce syntax-error-free code. Similar to Stage 1, we define
a threshold, Max Try, to limit the number of iterations in this
stage, addressing potential LLM stubbornness.



Fig. 3. Prompts of Stage 2 in FCP-LLM and example response for
ISCAS74283 4-bit fast adder. This stage generates a syntax-error-free
SystemVerilog code based on coverpoint plan.

D. Evaluation Metric

The design of coverpoint plan is a high-level system
task in the front end of the SoC design flow. As a result,
there are few established evaluation metrics for this problem.
To formulate the problem of evaluation, we first denote a
well-defined natural language specification as S, and each port
in the design as pi. Notably, this coverpoint plan considers
input and output ports while excluding the internal wires or
registers. The process of the LLM-driven framework, denoted
as Gen, involves analyzing the specification S to generate
a comprehensive set of coverpoints for each port pi of the
design. Meanwhile, the process of defining a set of target
coverpoints for a design is symbolized as Tar. Therefore, the
framework aims to generate coverpoints that closely match the
target coverpoints as a golden reference, expressed as:

∀pi ∈ S,Gen(S, pi) ∩ Tar(S, pi) → Tar(S, pi) (1)

Based on the defined target, we introduce a metric,
Quality of Coverpoint Plan (QCP), to quantitatively assess the
generation process as follows:

QCP =
Gen(S, pi) ∩ Tar(S, pi)

Tar(S, pi)
×
(
1− ∆Gen(S, pi)

Gen(S, pi)

)
(2)

where ∆Gen(S, pi) represents a non-intersection portion
of generated with target set of coverpoints. This formula
evaluates both the accuracy and redundancy of the generated

TABLE I
CIRCUITS CHARACTERISTICS IN BENCHMARK SUITE

Circuits Number of Ports Max Bus Size
Inputs Outputs

74X-Series Circuits

74283 3 2 4
74181 5 5 4
74L85 5 3 4

Customized Circuits

Arithmetic Unit 3 1 8
1-Hot Decoder 2 1 16

This table shows circuit characteristics including number of input/output
ports and maximum bus size.

coverpoint plan in comparison to the golden reference. By
penalizing the incorrect or redundant coverpoints of the plan,
QCP ensures that the generated set is not only comprehensive
but also precise, and closely aligned with the intended
functionality.

III. EXPERIMENTAL RESULTS

For each design in our benchmark suite, we provide the
design specification, Verilog code, and target coverpoints. The
evaluation criteria, including syntax and QCP, are used to
compare the generation quality of our framework against a
baseline using the same LLM. The LLMs employed in our
experiments are OpenAI’s GPT-4o and o1-mini [19].

A. Benchmark Suite

This study focuses on generating critical coverpoint plan for
the ports of digital circuit designs. We collected and designed a
benchmark suite based on frequently used modules in digital
circuits. Meanwhile, we added the design specifications for
these circuits, focusing on the explanation of functionalities for
each input and output port, which helped LLM to understand
the design intent of the given design.

Table I shows the details of the benchmark suite, including
three 74X-Series circuits [20] and two custom circuits. The
functions of these circuits are as follows:

1) 74283: A 4-bit fast full adder based on a carry
look-ahead module, which is more efficient than
ripple-carry adder.

2) 74181: A 4-bit arithmetic logic unit which allows 16
logic and 16 arithmetic functions.

3) 74L85: A 4-bit magnitude comparator which enables
cascading by three dedicate inputs, allowing results of
one comparator to be fed into the next.

4) Arithmetic Unit: A 4-bit arithmetic unit which contain
addition, multiplication, subtraction and division.

5) 1-Hot Decoder: A 16-bit 1-hot decoder which converts
1-hot codes to 4-bit binary representation.

B. Framework Evaluation

Table II presents the results of coverpoint plan generation
by both the baseline model and FCP-LLM by using GPT-4o

3



TABLE II
EVALUATION AND COMPARISON OF COVERPOINT PLAN GENERATION BETWEEN BASELINE AND FCP-LLM

Circuit
Redundant / Effective Coverpoints Target

Coverpoints

Quality of Generated Coverpoint Plan

GPT-4o o1-mini GPT-4o o1-mini

Baseline FCP-LLM Baseline FCP-LLM Baseline FCP-LLM Baseline FCP-LLM

74283 39/13 9/13 39/13 4/13 13 25.00% 58.21% 25.00% 76.47%
74181 39/37 3/25 39/37 3/26 37 48.68% 60.33% 48.68% 62.29%
74L85 20/17 3/18 26/18 3/18 18 44.71% 87.10% 40.91% 84.38%

Arithmetic Unit 101/9 2/12 269/12 10/13 15 5.25% 66.40% 3.41% 50.79%
1-Hot Decoder 24/8 3/8 24/8 2/8 8 25.00% 70.59% 25.26% 77.42%

• In this experiment, Executions and Max Try of FCP-LLM were set to 1 and 3 separately.
• The experiments for each method have been ran three times.

and o1-mini. Executions and Max Try were set to 1 and 3
separately for acquiring the best results from our experiments,
which minimized the hallucination effects. The experiment
was conducted in a zero-shot model, without fine-tuning or
retrieval techniques. For a fair comparison, both models were
provided the same information which includes the design
specification, port declarations, and a SystemVerilog template.
Additionally, the generated code was immediately suitable for
plug-and-play usage, facilitating rapid evaluation of stimuli.

First, FCP-LLM consistently generated syntax-error-free
SystemVerilog code throughout the experiments, while the
baseline model produced only three error-free outputs across
30 runs, highlighting the robust coding capabilities of
FCP-LLM. In coverpoint plan generation, both FCP-LLM and
the baseline approached the target coverpoints effectively as
shown in Table II. However, the baseline produced much
more redundant coverpoints compared to FCP-LLM. The
baseline’s QCP metrics fell below 50% for five benchmark
circuits, whereas FCP-LLM substantially optimized the
results, achieving an average improvement exceeding 300%.

As shown in Table II, the baseline model sometimes
outperformed than FCP-LLM in generating effective
coverpoints for the two custom designs, primarily because
it exhaustively traversed the full bus size for each port in
all designs. This exhaustive approach, however, led to more
redundant coverpoints. In contrast, FCP-LLM produced
fewer redundant coverpoints. According to the QCP metric,
FCP-LLM outperformed the baseline, indicating better
coverpoint plan generation quality by striking a balance
between effectiveness and redundancy. To be more specific,
the benchmark suite used in this study has a maximum 16-bit
bus size, significantly smaller than the bus sizes of modern
SoC designs. As the bus size increases, the testing space
for each port expands exponentially. Therefore, FCP-LLM
is expected to show even more efficient coverpoint plan
generation and convergence in early design verification stages
for larger designs.

IV. CONCLUSION

The FCP-LLM framework shows promising results in
automating functional coverpoint plan generation for early
design verification stages. Experimental results on the
benchmark circuits demonstrate that FCP-LLM optimized

the generation compared to the baseline. The results
reveal that FCP-LLM enable LLM to analyze design
and generate reasonable coverpoint plan for it. However,
coverpoints are not the only consideration in complete
functional coverage plan. The future research directions
include generating cross coverage and conditional coverage
by LLM. To further improve the methodology, the techniques
like retrieval-augmented generation (RAG) and model context
protocol (MCP) can be considered. RAG can improve the
intelligence of LLMs, and MCP may help LLMs understand
the tool chain better. As LLM technology advances, framework
like FCP-LLM are expected to play an increasingly important
role in streamlining and enhancing the design verification
process for complex SoC designs, though continued refinement
and expansion of the approach will be necessary.

REFERENCES

[1] U. Farooq and H. Mehrez, “Pre-silicon verification using multi-FPGA
platforms: A review,” Journal of Electronic Testing, vol. 37, no. 1, pp.
7–24, 2021.

[2] C. Spear and G. Tumbush, SystemVerilog for Verification: A Guide to
Learning the Testbench Language Features. Boston, MA: Springer US,
2012.

[3] M. Jammigumpula and P. K Shah, “A new mechanism in functional
coverage to ensure end to end scenarios,” in 2020 IEEE International
Conference for Innovation in Technology (INOCON), 2020, pp. 1–8.

[4] H. Witharana, Y. Lyu, S. Charles, and P. Mishra, “A Survey on
Assertion-based Hardware Verification,” ACM Comput. Surv., vol. 54,
no. 11s, Sep. 2022.

[5] S. El-Ashry and K. Salah, “A functional coverage approach for direct
testing: An industrial IP as a case study,” in IEEE EUROCON 2015 -
International Conference on Computer as a Tool (EUROCON), 2015,
pp. 1–6.

[6] A. Yao, J. Wu, and Z. Zhang, “Functional Coverage Driven Verification
for TAU-MVBC,” in 2010 Fifth International Conference on Internet
Computing for Science and Engineering, 2010, pp. 89–92.

[7] M. Liu, T.-D. Ene, R. Kirby et al., “ChipNeMo: Domain-Adapted LLMs
for Chip Design,” 2024, arXiv:2311.00176.

[8] S. Liu, W. Fang, Y. Lu, Q. Zhang, H. Zhang, and Z. Xie,
“RTLCoder: Outperforming GPT-3.5 in Design RTL Generation with
Our Open-Source Dataset and Lightweight Solution,” in 2024 IEEE
International Workshop on LLM-Aided Design. IEEE, 2024.

[9] M. Li, W. Fang, Q. Zhang, and Z. Xie, “SpecLLM: Exploring Generation
and Review of VLSI Design Specification with Large Language Model,”
2024, arXiv:2401.13266.

[10] M. Liu, N. Pinckney, B. Khailany, and H. Ren, “VerilogEval:
Evaluating Large Language Models for Verilog Code Generation,” in
2023 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2023.

[11] Y.-D. Tsai, M. Liu, and H. Ren, “RTLFixer: Automatically Fixing RTL
Syntax Errors with Large Language Models,” 2024, arXiv:2311.16543.

4



[12] R. Ma, Y. Yang, Z. Liu, J. Zhang, M. Li, J. Huang, and G. Luo,
“VerilogReader: LLM-Aided Hardware Test Generation,” in 2024 IEEE
LLM Aided Design Workshop (LAD), 2024, pp. 1–5.

[13] W. Fang, M. Li, M. Li, Z. Yan, S. Liu, H. Zhang, and
Z. Xie, “AssertLLM: Generating and Evaluating Hardware Verification
Assertions from Design Specifications via Multi-LLMs,” 2024,
arXiv:2402.00386.

[14] R. Kande, H. Pearce, B. Tan, B. Dolan-Gavitt, S. Thakur, R. Karri,
and J. Rajendran, “(Security) Assertions by Large Language Models,”
IEEE Transactions on Information Forensics and Security, vol. 19, pp.
4374–4389, 2024.

[15] Z. Zhang, G. Chadwick, H. McNally, Y. Zhao, and R. Mullins,
“LLM4DV: Using Large Language Models for Hardware Test Stimuli
Generation,” 2023, arXiv:2310.04535.

[16] C. Wang, Y. Zhang, W. Lu, J. Huang, M. Yin, Y. Zhang, Z. Li, and Y. Li,
“D2D-GPT: Leveraging Incremental Learning GPT for Seamless Design
Rule Conversion Across EDA Tools,” in IEEE Asia Pacific Conference
on Circuits and Systems (APCCAS), 2024, pp. 1–5.

[17] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang,
A. Madotto, and P. Fung, “Survey of Hallucination in Natural Language
Generation,” ACM Comput. Surv., vol. 55, no. 12, Mar. 2023.

[18] J. Xie, K. Zhang, J. Chen, R. Lou, and Y. Su, “Adaptive Chameleon or
Stubborn Sloth: Revealing the Behavior of Large Language Models in
Knowledge Conflicts,” 2024, arXiv:2305.13300.

[19] OpenAI, J. Achiam, S. Adler et al., “GPT-4 Technical Report,” 2024,
arXiv:2303.08774.

[20] “ISCAS hlm.” [Online]. Available: https://web.eecs.umich.edu/∼jhayes/
iscas.restore/benchmark.html

5


